
There will probably be other conven-
tions alongside definitions, but I guar-
antee nothing.

Though it is not strictly part of the defi-
nition, we usually assume that a quiver
is connected.
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1 Conventions
Throughout, k will denote an algebraically closed field.

2 Quivers
Definition (Quiver). A quiver Q = (Q0 ,Q1) is a directed graph on vertices Q0 with edges Q1.

Example.

1 2 3α
β

γ

δ

Definition (Representation of a quiver). A representation of a quiver Q, consists of a vector
space, Vi for each vertex i ∈ Q0 and a linear map fα ∶Vi → Vj for each edge α∶ i → j in Q1. We
denote the representation by (V , f ).

Example.

V1 V2 V3fα
fβ

fγ

fδ

Definition (Morphism of representations). A morphism ψ∶ (V , f ) → (W , д) is consists of a

1



A module is a generalisation of a vec-
tor space, forwhich the base space need
only be a ring rather than a field.

An algebra over a field is a ring that ad-
mits a distributive scalarmultiplication
from the base field; it is a ring and a vec-
tor space.

map ψ i ∶Vi →Wi for each i ∈ Q0, such that the squares

Vi Vj

Wi Wj

fα

дα

ψ i ψ j

commute for all α∶ i → j in Q1.

Example.

V1 V2 V3

W1 W2 W3

fα
fβ

fγ

fδ

дα
дβ

дγ

дδ

ψ1 ψ2 ψ3

Compare all of the above to definitions in category theory. It is clear that a quiver generates a
category, by composing edges into paths. In this case our representation is simply a functor from
the category of Q to the category of vector spaces. Ourmorphisms are then natural transforma-
tions between these functors.

There is a correspondence, for example in group theory, between the representations of a
group andmodules for the group algebra. The same is true in the case of quiver representations.
We require an algebra in order to define ourmodules.

Definition (Path algebra). The path algebra kQ defined to be the algebra whose underlying
vector space is generated by the paths in Q including a zero length path starting at each vertex.
The multiplication of two paths is given by concatenation if this makes sense (that is the first
path ends where the second begins) and is zero otherwise. Thismultiplication is then extended
linearly.

It is then true that a representation of the quiver is the same as amodule for the path algebra.
For example, let M be amodule for the algebra kQ we generate the representation:

Me1 Me2 Me3αe1
βe2

γe3

δe3
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1A module is indecomposable if it can-
not be written as the direct sum of two
non-zero modules.

We can also put relations on top of our quivers for example

2

1 4

3

α β

γ δ

αβ = γδ

Given such a bound quiver or quiver with relations we vary our definitions in the obvious
way. That is, for a representation (V , f ) wemust have fβ fα = fδ fγ .

The path algebrawould be defined as the quotient of the unbounded path algebra by the ideal
generated by the relations:

kQ
⟨αβ − γδ⟩

Let J = rad(kQ) = ⟨Q1⟩ be the ideal generated by all the edges; that is everything except zero
length paths. We consider relations I admissible if I ≤ J2. If we allowed a length one relation to
appear then we could remove an edge from the quiver to obtain the same path algebra. Often we
also require that Jn ≤ I, which ensures that our path algebra is finite dimensional.

Theorem 2.1:

Every finite dimensional algebra is Morita equivalent to the algebra of a finite quiver with
admissible relations.

By Morita equivalence we mean that the module categories are equivalent, so that from a
representation theory point of view the algebras are the same.
Example. Consider Cn , the cyclic group of order n = pt , where p is the characteristic of the field
k, and the quiver

Q = 1
α

I = ⟨αn⟩

Then kCn ≅ kQ/I ≅ k[x]/(xn).

3 Representation type

3.1 Finite representation type
Consider the algebra A = k[x]/(xn).

A module M for A is fully determined by the action of x on a M, thus we can think of M
simply as a squarematrix with entries in k. We have that xn = 0 and thus Mn = 0.

Thus we can write M in the form Jn1(0) ⊕ Jn2(0) ⊕ ⋅ ⋅ ⋅ ⊕ Jns(0), where Jn(λ) is the n × n
Jordan block with eigenvalue λ and n i ≤ n for all i.

If we further assume that M is indecomposable1 then we have that M ≅ Js(0) for some s ≤ n.
This shows that A has only finitely many non-isomorphic indecomposable modules. Such an
algebra is said to have finite representation type.
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Sλ is simply λ in its sum of Jordan
blocks form.

3.2 Tame representation type
Consider the algebra A = k[x], which is the algebra for the quiver

●

without relations.
As for the case above amodule is given by an endomorphismof a vector space.The difference

from the case with relations is that we no longer require this endomorphism to be nilpotent.
We can write M in the form Jn1(λ1)⊕ Jn2(λ2)⊕ ⋅ ⋅ ⋅ ⊕ Jns(λs) where (x − λ1)n1 . . . (x − λs)ns

is the characteristic polynomial for M.
Consider the k[x]-k[x]–bimodule

Jn(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x 1 ⋯ 0
0 x ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ x

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and let Sλ = k[x]/(x − λ), a simple 1-dimensional k[x]-module. We have that

Jn(x) ⊗
k[x]

Sλ = Jn(λ)

The image of the functor

Jn(x) ⊗
k[x]
−∶mod k[x](1)Ð→ mod k[x]

from 1-dimensional k[x]-modules to k[x]-modules contains (an isomorphic copy) of every n-
dimensional indecomposable k[x]module.

The way to think about what is happening here is that the n-dimensional modules are being
covered by a one parameter family ofmodules. That is each n-dimensional module is of the form
Jn(λ) for λ in k. This characterises what it means for an algebra to have tame representation
type.

Definition (Tame representation type). An algebra A, is tame if it is not of finite representation
type and if for each n ∈N there is a finite family of A-k[t]–bimodules M1 , . . . ,Ms(n) such that

(i) M i is finitely-generated and free as k[t]-module;

(ii) for almost all indecomposable A-modules, X, of dimension n we have X ≅ M i ⊗
k[t]

Sλ for

some 1 ≤ i ≤ s(n) and for some λ ∈ k.

This definition means that in each dimension, the indecomposablemodules are covered by a
finite set of 1-parameter families ofmodules.
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Example. Consider the quiver without relations

1 2

The indecomposablemodules are covered by the families
dim = 1

k 0 or 0 k

dim = 2

k k
1

λ
or k k

0

1

dim = 3
k
⊕ k
k

1

1
or

k
k ⊕

k

1

1

dim = 4

k2 k2
Id

J2(λ)
or k2 k2

J2(0)

Id

dim = 5
k
⊕ k
k ⊕
⊕ k
k

or

k
k ⊕
⊕ k
k ⊕

k

⋮ ⋮

3.3 Wild representation type
Consider the algebra k⟨u, v⟩, the group algebra for the free group on two generators. There is a
problem with this algebra:

Theorem 3.1:

For any finitely generated algebra A over k there is a fully faithful functor modA →
mod k⟨u, v⟩
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A functor satisfying (i–iii) is said to in-
set indecomposablemodules.

[Dro80] Drozd, Tame and wild ma-
trix problems, Representation theory,
II (Proc. Second Internat. Conf., Car-
leton Univ., Ottawa, Ont., 1979), Lec-
ture Notes in Math., vol. 832, Springer,
Berlin, 1980, pp. 242–258

[CB88] Crawley-Boevey, On tame alge-
bras and bocses, Proc. London Math.
Soc. (3) 56 (1988), no. 3, 451–483

Proof. Since A is finitely generated, say A = ⟨a1 , . . . , as⟩ and let M be the left A-module As+2.
We let u and v act on the right of M via the linearmaps

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 ⋯ 0
⋮ ⋱ ⋱ ⋮
0 ⋱ 1
0 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ ⋯ 0
1 0 ⋱ 0
a1 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ as 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the functorM⊗
A
−∶modA→ mod k⟨u, v⟩ is fully faithful. The proof of this is straightforward yet

time consuming.

Thus we see that the algebra k⟨u, v⟩ contains the representation theory for all finitely gener-
ated k-algebras. This is the archetypical wild algebra.

Definition (Wild representation type). An algebra A is said to have wild representation type if
there is a k⟨u, v⟩-A bimodule, M, such that

(i) M is free as a k⟨u, v⟩-module;

(ii) if X is an indecomposable k⟨u, v⟩-module then M⊗X is indecomposable;

(iii) if M⊗X ≅ M⊗Y then X ≅ Y

If further themodule category of k⟨u, v⟩ embeds fully faithfully into themodule category of
Awe say that A is strictly wild.

Example. Consider the quiver without relations, Q:

1 2

The representation

k⟨u, v⟩ k⟨u, v⟩

1

u

v

is a k⟨u, v⟩-kQ–bimodule satisfying the properties of the definition.
Notice that here we abuse the correspondence between representations andmodules further

in that we denote a bimodule as a representation of kQ with k⟨u, v⟩-modules in place of vector
spaces.

Theorem 3.2: (Drozd, 1977)

Every finite-dimensional algebra over an algebraically closed field has exactly one represen-
tation type: finite, tame or wild.

The proof of this result is way beyond the scope of this talk (and the author’s abilities). See
[Dro80] or [CB88] for details.
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4 Further topics
Let Q be a connected quiver without oriented cycles. Such a quiver has the property that kQ is
hereditary. We denote by ∣Q∣ the undirected graph of Q.

Consider thematrix

MQ = (m i j) = {
2 i = j

−(# edges between i and j) i ≠ j

the incidencematrix for ∣Q∣.
We consider the action of thismatrix on Zn , where n is the number of vertices in Q.

Claim. M−1Q (Nn) ∩ ∂ (Nn) = {0}, where ∂ is the boudary operator.

Proof. Let x = (x1 , . . . , xn) ∈ ∂ (Nn) be such that Mx ∈Nn .
Since Q is connected there is an edge i − j such that x i = 0 but x j > 0. We have

(Mx)i =∑
k
m i kxk

= m i jx j + ∑
k≠i , j

m i kxk

≤ m i jx j < 0

These gives three possibilities for the action of M.

(a) M−1Q (Nn) ⊆Nn
>0
∪ {0}

M−1 (Nn)

(b) M−1Q (Nn) = Zu for some u ∈ Zn . In this case Mu = 0
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M−1 (Nn)

(c) M−1Q (Nn) ∩Nn = {0}

M−1 (Nn)
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The following quivers are of type (b):

Ãn =

1 1

1 1

1 1

with n + 1 vertices

D̃n =

1 1

2 2 2

1 1

with n + 1 vertices

Ẽ6 =

1 2 3 2 1

2

1

with 7 vertices

Ẽ7 =
1 2 3 4 3 2 1

2
with 8 vertices

Ẽ8 =
1 2 3 4 5 6 4 2

3
with 9 vertices
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The quivers that contain non of the type (b) quivers are of type (a). These are the quivers:

An = ● ● ● with n vertices

Dn =

●

● ● ●

●

with n vertices

E6 =
● ● ● ● ●

●
with 6 vertices

E7 =
● ● ● ● ● ●

●
with 7 vertices

E8 =
● ● ● ● ● ● ●

●
with 8 vertices

All other quivers are of type (c).

Theorem 4.1:

Quivers of type

(a) are of finite representation type;

(b) are of tame representation type;

(c) are of wild representation type.

This idea generalises to the case where we have relations, though still no oriented cycles. Let
R be aminimal generating set for the relations such that R ⊆ ⋃i , j∈Q0 I(i , j),where I(i , j) denotes
the ideal consisting of paths starting at i and ending at j. Let r i j = ∣R ∩ I(i , j)∣. We define the
quadratic form

q(x) = ∑
i∈Q0

x2i − ∑
α∶i→ j

x ix j + ∑
i , j∈Q0

r i jx ix j

Theorem 4.2:

The algebra kQ/⟨R⟩ is
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• of finite type if q(x) ≥ 1 for all x;

• of tame type if q(x) ≥ 0 for all x, and attains 0 somewhere;

• of wild type if q(x) < 0 for some x.
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