MATH20222: Introduction to Geometry

Sheet 1 Solutions - Semester 2 2020-21

Throughout \mathbb{E}^{n} denotes an n-dimensional Euclidean vector space with orthonormal basis $\mathcal{B}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right)$.

1. Consider the following vectors in \mathbb{R}^{2} :

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{a}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

(a) Show that $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a basis for \mathbb{R}^{2}.
(b) Show that $\{\mathbf{a}, \mathbf{b}\}$ is a basis for \mathbb{R}^{2}.
(c) Show that $\left\{\mathbf{e}_{1}, \mathbf{b}\right\}$ is not a basis for \mathbb{R}^{2}.

Solution: For each pair of vectors, we have to show they are linearly independent and span \mathbb{R}^{2}.
(a)

$$
\lambda_{1} \mathbf{e}_{1}+\lambda_{2} \mathbf{e}_{2}=\mathbf{0} \Rightarrow \lambda_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \lambda_{1}=\lambda_{2}=0
$$

Therefore they are linearly independent. For any arbitrary vector $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\top}$ of \mathbb{R}^{2}, we can write it as

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

therefore $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ span \mathbb{R}^{2}.
(b)

$$
\lambda_{1} \mathbf{a}+\lambda_{2} \mathbf{b}=\mathbf{0} \Rightarrow \lambda_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \lambda_{1}+3 \lambda_{2} \\
3 \lambda_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The second coordinate gives $\lambda_{1}=0$ and therefore $\lambda_{2}=0$, and so they are linearly independent. For any arbitrary vector $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\top}$ of \mathbb{R}^{2}, we can write it as the linear combination

$$
\begin{aligned}
& \lambda_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\Rightarrow & \lambda_{1}=\frac{x_{2}}{3}, \lambda_{2}=\frac{x_{1}-2 \lambda_{1}}{3}=\frac{x_{1}}{3}-\frac{2 x_{2}}{9},
\end{aligned}
$$

therefore $\{\mathbf{a}, \mathbf{b}\}$ span \mathbb{R}^{2}.

MATH20222: Introduction to Geometry: Sheet 1 Solutions — Semester 2 2020-21
(c)

$$
\lambda_{1} \mathbf{e}_{1}+\lambda_{2} \mathbf{b}=\mathbf{0} \Rightarrow \lambda_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
\lambda_{1}+3 \lambda_{2} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This holds for $\lambda_{1}=3, \lambda_{2}=-1$, therefore we have a linear dependence with non-zero coefficients and so they do not form a basis.
2. State whether each of the following maps $\langle-,-\rangle$ define an inner product on \mathbb{R}^{3}. [where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}, \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\top}$.]
(a) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}$
(b) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+3 x_{2} y_{2}+5 x_{3} y_{3}$
(c) $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{3}$

Solution:

(a) $\langle-,-\rangle$ is not an inner product as it is not positive definite. To see this, $\langle\mathbf{x}, \mathbf{x}\rangle=$ $x_{1}^{2}+x_{2}^{2}$, which is zero for certain non-zero vectors, such as $(0,0,-1)^{\top}$.
(b) $\langle-,-\rangle$ is an inner product. We need to check symmetry, linearity and that it is positive definite.

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+3 x_{2} y_{2}+5 x_{3} y_{3}=y_{1} x_{1}+3 y_{2} x_{2}+5 y_{3} x_{3}=\langle\mathbf{y}, \mathbf{x}\rangle
$$

and so symmetry holds.

$$
\begin{aligned}
\langle\lambda \mathbf{x}+\mu \mathbf{y}, \mathbf{z}\rangle & =\left(\lambda x_{1}+\mu y_{1}\right) z_{1}+3\left(\lambda x_{2}+\mu y_{2}\right) z_{2}+5\left(\lambda x_{3}+\mu y_{3}\right) z_{3} \\
& =\lambda\left(x_{1} z_{1}+3 x_{2} z_{2}+5 x_{3} z_{3}\right)+\mu\left(y_{1} z_{1}+3 y_{2} z_{2}+5 y_{3} z_{3}\right) \\
& =\lambda\langle\mathbf{x}, \mathbf{z}\rangle+\mu\langle\mathbf{y}, \mathbf{z}\rangle
\end{aligned}
$$

and so linearity holds. Finally

$$
\langle\mathbf{x}, \mathbf{x}\rangle=x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2} \geq 0
$$

is greater than or equal to zero for elements $\mathbf{x} \in \mathbb{R}^{3}$. Furthermore, there is equality if and only if $x_{1}^{2}=3 x_{2}^{2}=5 x_{3}^{2}=0$, which only occurs for $\mathbf{x}=\mathbf{0}$. Therefore positive-definite also holds.
(c) $\langle-,-\rangle$ does not define an inner product as it does not satisfy positive definiteness:

$$
\langle\mathbf{x}, \mathbf{x}\rangle=2 x_{1} x_{2}+x_{3}^{2}
$$

takes negative values at $\mathbf{x}=(-1,1,0)^{\top}$.
3. Let $\mathcal{B}=\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ be an (ordered) orthonormal basis of \mathbb{E}^{3}. Consider the ordered set of vectors $\mathcal{C}=\left(\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right)$ defined by \mathcal{B} via:
(a) $\mathbf{f}_{1}=\mathbf{e}_{2}, \mathbf{f}_{2}=\mathbf{e}_{1}, \mathbf{f}_{3}=\mathbf{e}_{3}$
(b) $\mathbf{f}_{1}=\mathbf{e}_{1}, \mathbf{f}_{2}=\mathbf{e}_{1}+3 \mathbf{e}_{3}, \mathbf{f}_{3}=\mathbf{e}_{3}$
(c) $\mathbf{f}_{1}=\mathbf{e}_{1}-\mathbf{e}_{2}, \mathbf{f}_{2}=3 \mathbf{e}_{1}-3 \mathbf{e}_{2}, \mathbf{f}_{3}=\mathbf{e}_{3}$
(d) $\mathbf{f}_{1}=\mathbf{e}_{2}, \mathbf{f}_{2}=\mathbf{e}_{1}, \mathbf{f}_{3}=\mathbf{e}_{1}+\mathbf{e}_{2}+\lambda \mathbf{e}_{3}$ where $\lambda \in \mathbb{R}$ is an arbitrary coefficient.

For each set of vectors, write down the transition matrix from \mathcal{B} to \mathcal{C}. Is \mathcal{C} a basis? Is \mathcal{C} orthogonal?

Solution:

(a)

$$
\mathcal{B}^{\mathcal{B}} T_{\mathcal{C}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad, \quad \operatorname{det}\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)=-1
$$

The transition matrix has non-zero determinant, and so \mathcal{C} is a basis. Moreover, we see $\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)^{\top}\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)=I_{3}$ holds, and so the basis is orthogonal also.
(b)

$$
{ }_{\mathcal{B}} T_{\mathcal{C}}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 3 & 1
\end{array}\right], \quad \operatorname{det}\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)=0
$$

As the transition matrix has determinant zero, \mathcal{C} is not a basis. One could also note that the rank must be ≤ 2 as $\mathcal{B}_{\mathcal{B}} T_{\mathcal{C}}$ has a row of zeros. As the determinant is not equal to ± 1, it immediately cannot be orthogonal.
(c)

$$
\mathcal{B} T_{\mathcal{C}}=\left[\begin{array}{ccc}
1 & 3 & 0 \\
-1 & -3 & 0 \\
0 & 0 & 1
\end{array}\right] \quad, \quad \operatorname{det}\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)=0
$$

As the transition matrix has determinant zero, \mathcal{C} is not a basis. One could also notice the first two columns are proportional, and so there is a linear dependence between $\mathbf{f}_{1}, \mathbf{f}_{2}$. As the determinant is not equal to ± 1, it immediately cannot be orthogonal.
(d)

$$
\mathcal{B} T_{\mathcal{C}}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & \lambda
\end{array}\right] \quad, \quad \operatorname{det}\left(\mathcal{B} T_{\mathcal{C}}\right)=-\lambda
$$

The transition matrix has nonzero determinant whenever $\lambda \neq 0$, and so \mathcal{C} forms a basis when this occurs.
\mathcal{C} is not orthogonal - if we calculate $\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)^{\top}\left({ }_{\mathcal{B}} T_{\mathcal{C}}\right)$, we see

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & \lambda
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & \lambda \\
1 & 2 & \lambda \\
\lambda & \lambda & \lambda^{2}
\end{array}\right] \neq I_{3} .
$$

One could also notice this by considering the length of f_{3} :

$$
\left|\mathbf{f}_{3}\right|=\sqrt{2+\lambda^{2}}>1
$$

therefore \mathcal{C} cannot be orthonormal as \mathbf{f}_{3} is not unit length.
4. Consider the sets of polynomials

$$
V=\left\{a x^{2}+b x+c \mid a, b, c \in \mathbb{R}\right\}, T=\left\{x^{2}+p x+q \mid p, q \in \mathbb{R}\right\}
$$

with the natural operations of addition and multiplication of polynomials.
[You may assume these operations satisfy commutativity, associativity and distributivity.]
(a) Which of these are vector spaces (over \mathbb{R}), and why?
(b) Show the polynomials $1, x, x^{2}$ are linearly independent in V.
(c) Calculate the dimension of V.

Solution:

(a) T is not a vector space, as the sum of any two polynomials does not belong to T e.g. $x^{2}+x^{2}=2 x^{2} \notin T$.
V is a vector space. Let $f=a_{2} x^{2}+a_{1} x+a_{0}, g=b_{2} x^{2}+b_{1} x+b+0$, to see the remaining axioms hold:

- (Zero) Setting $a_{2}=a_{1}=a_{0}=0$ gives $f=0$ as the zero element.
- (Unity) Clearly $1 \cdot f=f$.
- (Additive inverses) For f, the inverse polynomial is $-f=\left(-a_{2}\right) x^{2}+\left(-a_{1}\right) x+$ $\left(-a_{0}\right)$.
- (Additive closure) The sum $f+g=\left(a_{2}+b_{2}\right) x^{2}+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right)$ is contained in V .
- (Multiplicative closure) $\lambda \cdot f=\left(\lambda a_{2}\right) x^{2}+\left(\lambda a_{1}\right) x+\left(\lambda a_{0}\right)$ is contained in V for any choice of $\lambda \in \mathbb{R}$.
(b) Suppose $1, x, x^{2}$ satisfy an identity

$$
c_{0} \cdot 1+c_{1} \cdot x+c_{2} \cdot x^{2}=\mathbf{0}\left(=0 \cdot 1+0 \cdot x+0 \cdot x^{2}\right)
$$

for some choice of $c_{0}, c_{1}, c_{2} \in \mathbb{R}$. Equivalently, the polynomial $P(x)=c_{0}+c_{1} x+$ $c_{2} x^{2}$ equals zero for all choices of x. Testing this on the values $x=0,1,-1$, we see

$$
\begin{aligned}
P(0) & =c_{0} \Rightarrow c_{0}=0 \\
P(1) & =c_{1}+c_{2} \Rightarrow c_{1}=-c_{2} \\
P(-1) & =-c_{1}+c_{2} \Rightarrow c_{1}=c_{2} \\
& \Rightarrow c_{0}=c_{1}=c_{2}=0
\end{aligned}
$$

Therefore the only linear combination between $\left\{1, x, x^{2}\right\}$ equal to zero is when all coefficients are zero, and so they are linearly independent.
(c) $\left\{1, x, x^{2}\right\}$ are linearly independent and span V, therefore they form a basis. Therefore $\operatorname{dim}(V)=3$.
5. Let $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ be vectors of a vector space V. Show that if at least one of the vectors is equal to 0 , then they are linearly dependent.

Solution: Without loss of generality, let us say $\mathbf{a}_{1}=\mathbf{0}$. We can pick any arbitrary real $\lambda \neq 0$ such that

$$
\lambda \cdot \mathbf{a}_{1}+0 \cdot \mathbf{a}_{2}+\cdots+0 \cdot \mathbf{a}_{n}=\mathbf{0}
$$

As we have found a linear combination where not all coefficients are zero, these vectors are linearly dependent.
6. Show that any three vectors in \mathbb{R}^{2} must be linearly dependent.

Solution: Pick three arbitrary vectors

$$
\mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

Note that by Question 2, if any are equal to $\mathbf{0}$ then we are done. Therefore without
loss of generality, we can say $a_{1} \neq 0$. Consider the vectors

$$
\begin{aligned}
& \mathbf{b}^{\prime}=\mathbf{b}-\frac{b_{1}}{a_{1}} \mathbf{a}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
\frac{a_{2} b_{1}}{a_{1}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mu_{b}
\end{array}\right], \mu_{b}=b_{2}-\frac{a_{2} b_{1}}{a_{1}} \\
& \mathbf{c}^{\prime}=\mathbf{c}-\frac{c_{1}}{a_{1}} \mathbf{a}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]-\left[\begin{array}{c}
c_{1} \\
\frac{a_{2} c_{1}}{a_{1}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mu_{c}
\end{array}\right], \mu_{c}=c_{2}-\frac{a_{2} c_{1}}{a_{1}}
\end{aligned}
$$

If either $\mu_{b}, \mu_{c}=0$, we have found a linear dependence between two of the vectors. Otherwise, $\mathbf{b}^{\prime}, \mathbf{c}^{\prime}$ are linearly dependent as

$$
\frac{1}{\mu_{b}} \mathbf{b}^{\prime}-\frac{1}{\mu_{c}} \mathbf{c}^{\prime}=\mathbf{0}
$$

This gives rise to a linear dependence between $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$:

$$
\frac{1}{\mu_{b}}\left(\mathbf{b}-\frac{b_{1}}{a_{1}} \mathbf{a}\right)-\frac{1}{\mu_{c}}\left(\mathbf{c}-\frac{c_{1}}{a_{1}} \mathbf{a}\right)=\left(\frac{c_{1}}{a_{1} \mu_{c}}-\frac{b_{1}}{a_{1} \mu_{b}}\right) \mathbf{a}+\frac{1}{\mu_{b}} \mathbf{b}-\frac{1}{\mu_{c}} \mathbf{c}=\mathbf{0}
$$

7. Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be vectors of \mathbb{E}^{3} such that each has unit length and they are pairwise orthogonal with each other. Show explicitly that they form a basis for \mathbb{E}^{3}.

Solution: We use the proposition that n linearly independent vectors in \mathbb{E}^{n} form a basis (proved in review session 1). As the space is three dimensional, it suffices to show the vectors are linearly independent, i.e. $\lambda_{e} \mathbf{e}+\lambda_{f} \mathbf{f}+\lambda_{g} \mathbf{g}=\mathbf{0}$ if and only if $\lambda_{e}=\lambda_{f}=\lambda_{g}=0$. Take the inner product of $\lambda_{e} \mathbf{e}+\lambda_{f} \mathbf{f}+\lambda_{g} \mathbf{g}$ with $\mathbf{e}:$

$$
\left\langle\lambda_{e} \mathbf{e}+\lambda_{f} \mathbf{f}+\lambda_{g} \mathbf{g}, \mathbf{e}\right\rangle=\lambda_{e}\langle\mathbf{e}, \mathbf{e}\rangle+\lambda_{f}\langle\mathbf{f}, \mathbf{e}\rangle+\lambda_{g}\langle\mathbf{g}, \mathbf{e}\rangle=\lambda_{e} \cdot 1+\lambda_{f} \cdot 0+\lambda_{g} \cdot 0=0
$$

implying $\lambda_{e}=0$. Taking the inner product with \mathbf{f} and \mathbf{g} gives $\lambda_{f}=\lambda_{g}=0$, therefore $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ are linearly independent.
8. Let $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ be vectors in \mathbb{E}^{3} such that \mathbf{a}, \mathbf{b} have unit length and are orthogonal to each other, and \mathbf{c} has length $\sqrt{3}$ and forms the angle $\varphi=\arccos \frac{1}{\sqrt{3}}$ with \mathbf{a} and \mathbf{b}. Show that $\{\mathbf{a}, \mathbf{b}, \mathbf{c}-\mathbf{a}-\mathbf{b}\}$ forms an orthonormal basis for \mathbb{E}^{3}.

Solution: a,b have unit length and are orthogonal to each other, we immediately have

$$
\langle\mathbf{a}, \mathbf{a}\rangle=\langle\mathbf{b}, \mathbf{b}\rangle=1,\langle\mathbf{a}, \mathbf{b}\rangle=0 .
$$

We also know that as $|\mathbf{c}|=\sqrt{\langle\mathbf{c}, \mathbf{c}\rangle}=\sqrt{3}$, we see that $\langle\mathbf{c}, \mathbf{c}\rangle=3$. Furthermore, we can calculate $\langle\mathbf{a}, \mathbf{c}\rangle$ via

$$
\langle\mathbf{a}, \mathbf{c}\rangle=|\mathbf{a}||\mathbf{c}| \cos \varphi=1 \cdot \sqrt{3} \cdot \frac{1}{\sqrt{3}}=1 .
$$

We also get $\langle\mathbf{b}, \mathbf{c}\rangle=1$ via the same calculation.
To show $\{\mathbf{a}, \mathbf{b}, \mathbf{c}-\mathbf{a}-\mathbf{b}\}$ form an orthonormal basis, we need to show they have unit length and are pairwise orthogonal. We know already \mathbf{a}, \mathbf{b} are orthogonal and have unit length. To see $\mathbf{c}-\mathbf{a}-\mathbf{b}$ is orthogonal to \mathbf{a} (and by a very similar calculation \mathbf{b}), we get

$$
\langle\mathbf{c}-\mathbf{a}-\mathbf{b}, \mathbf{a}\rangle=\langle\mathbf{c}, \mathbf{a}\rangle-\langle\mathbf{a}, \mathbf{a}\rangle-\langle\mathbf{b}, \mathbf{a}\rangle=1-0-1=0
$$

Finally, to check $\mathbf{c}-\mathbf{a}-\mathbf{b}$ has unit length, we get

$$
\begin{aligned}
\langle\mathbf{c}-\mathbf{a}-\mathbf{b}, \mathbf{c}-\mathbf{a}-\mathbf{b}\rangle & =\langle\mathbf{c}, \mathbf{c}\rangle+\langle\mathbf{a}, \mathbf{a}\rangle+\langle\mathbf{b}, \mathbf{b}\rangle+2\langle\mathbf{a}, \mathbf{b}\rangle-2\langle\mathbf{a}, \mathbf{c}\rangle-2\langle\mathbf{b}, \mathbf{c}\rangle \\
& =3+1+1+2 \cdot 0-2 \cdot 1-2 \cdot 1=1
\end{aligned}
$$

therefore $|\mathbf{c}|=\sqrt{\langle\mathbf{c}, \mathbf{c}\rangle}=1$.

