MATH20222: Introduction to Geometry Sheet 1 Solutions — Semester 2 2020-21

Throughout \mathbb{E}^n denotes an *n*-dimensional Euclidean vector space with orthonormal basis $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$.

1. Consider the following vectors in \mathbb{R}^2 :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$,

- (a) Show that $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for \mathbb{R}^2 .
- (b) Show that $\{a, b\}$ is a basis for \mathbb{R}^2 .
- (c) Show that $\{\mathbf{e}_1, \mathbf{b}\}$ is *not* a basis for \mathbb{R}^2 .

Solution: For each pair of vectors, we have to show they are linearly independent and span \mathbb{R}^2 .

(a)

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 = \mathbf{0} \Rightarrow \lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \lambda_1 = \lambda_2 = 0$$

Therefore they are linearly independent. For any arbitrary vector $\mathbf{x} = (x_1, x_2)^T$ of \mathbb{R}^2 , we can write it as

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

therefore $\{\mathbf{e}_1, \mathbf{e}_2\}$ span \mathbb{R}^2 .

(b)

$$\lambda_1 \mathbf{a} + \lambda_2 \mathbf{b} = \mathbf{0} \Rightarrow \lambda_1 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2\lambda_1 + 3\lambda_2 \\ 3\lambda_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The second coordinate gives $\lambda_1 = 0$ and therefore $\lambda_2 = 0$, and so they are linearly independent. For any arbitrary vector $\mathbf{x} = (x_1, x_2)^T$ of \mathbb{R}^2 , we can write it as the linear combination

$$\lambda_1 \begin{bmatrix} 2\\3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3\\0 \end{bmatrix} = \begin{bmatrix} x_1\\x_2 \end{bmatrix}$$
$$\Rightarrow \lambda_1 = \frac{x_2}{3}, \ \lambda_2 = \frac{x_1 - 2\lambda_1}{3} = \frac{x_1}{3} - \frac{2x_2}{9},$$

therefore $\{a, b\}$ span \mathbb{R}^2 .

(c)

$$\lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{b} = \mathbf{0} \implies \lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda_1 + 3\lambda_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This holds for $\lambda_1 = 3$, $\lambda_2 = -1$, therefore we have a linear dependence with non-zero coefficients and so they do not form a basis.

2. State whether each of the following maps $\langle -, - \rangle$ define an inner product on \mathbb{R}^3 .

[where
$$\mathbf{x} = (x_1, x_2, x_3)^{\mathsf{T}}, \mathbf{y} = (y_1, y_2, y_3)^{\mathsf{T}}$$
.]

- (a) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2$
- (b) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 3 x_2 y_2 + 5 x_3 y_3$
- (c) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_2 + x_2 y_1 + x_3 y_3$

Solution:

- (a) $\langle -, \rangle$ is not an inner product as it is not positive definite. To see this, $\langle \mathbf{x}, \mathbf{x} \rangle = x_1^2 + x_2^2$, which is zero for certain non-zero vectors, such as $(0, 0, -1)^T$.
- (b) ⟨−,−⟩ is an inner product. We need to check symmetry, linearity and that it is positive definite.

$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 3 x_2 y_2 + 5 x_3 y_3 = y_1 x_1 + 3 y_2 x_2 + 5 y_3 x_3 = \langle \mathbf{y}, \mathbf{x} \rangle$$

and so symmetry holds.

$$\langle \lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z} \rangle = (\lambda x_1 + \mu y_1) z_1 + 3(\lambda x_2 + \mu y_2) z_2 + 5(\lambda x_3 + \mu y_3) z_3 = \lambda (x_1 z_1 + 3 x_2 z_2 + 5 x_3 z_3) + \mu (y_1 z_1 + 3 y_2 z_2 + 5 y_3 z_3) = \lambda \langle \mathbf{x}, \mathbf{z} \rangle + \mu \langle \mathbf{y}, \mathbf{z} \rangle$$

and so linearity holds. Finally

$$\langle \mathbf{x}, \mathbf{x} \rangle = x_1^2 + 3x_2^2 + 5x_3^2 \ge 0$$

is greater than or equal to zero for elements $\mathbf{x} \in \mathbb{R}^3$. Furthermore, there is equality if and only if $x_1^2 = 3x_2^2 = 5x_3^2 = 0$, which only occurs for $\mathbf{x} = \mathbf{0}$. Therefore positive-definite also holds.

(c) $\langle -, - \rangle$ does not define an inner product as it does not satisfy positive definiteness:

$$\langle \mathbf{x}, \mathbf{x} \rangle = 2x_1x_2 + x_3^2$$

takes negative values at $\mathbf{x} = (-1, 1, 0)^{\mathsf{T}}$.

3. Let $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be an (ordered) orthonormal basis of \mathbb{E}^3 . Consider the ordered set of vectors $\mathcal{C} = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ defined by \mathcal{B} via:

(a)
$$\mathbf{f}_1 = \mathbf{e}_2$$
, $\mathbf{f}_2 = \mathbf{e}_1$, $\mathbf{f}_3 = \mathbf{e}_3$

(b)
$$\mathbf{f}_1 = \mathbf{e}_1$$
, $\mathbf{f}_2 = \mathbf{e}_1 + 3\mathbf{e}_3$, $\mathbf{f}_3 = \mathbf{e}_3$

(c)
$$\mathbf{f}_1 = \mathbf{e}_1 - \mathbf{e}_2$$
, $\mathbf{f}_2 = 3\mathbf{e}_1 - 3\mathbf{e}_2$, $\mathbf{f}_3 = \mathbf{e}_3$

(d) $\mathbf{f}_1 = \mathbf{e}_2$, $\mathbf{f}_2 = \mathbf{e}_1$, $\mathbf{f}_3 = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ where $\lambda \in \mathbb{R}$ is an arbitrary coefficient.

For each set of vectors, write down the transition matrix from \mathcal{B} to \mathcal{C} . Is \mathcal{C} a basis? Is \mathcal{C} orthogonal?

Solution:

(a)

$$_{\mathcal{B}}T_{\mathcal{C}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\det(_{\mathcal{B}}T_{\mathcal{C}}) = -1$

The transition matrix has non-zero determinant, and so C is a basis. Moreover, we see $(_{\mathcal{B}}T_{\mathcal{C}})^{\mathsf{T}}(_{\mathcal{B}}T_{\mathcal{C}}) = I_3$ holds, and so the basis is orthogonal also.

(b)

$${}_{\mathcal{B}}T_{\mathcal{C}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 1 \end{bmatrix} \quad , \quad \det({}_{\mathcal{B}}T_{\mathcal{C}}) = 0$$

As the transition matrix has determinant zero, C is not a basis. One could also note that the rank must be ≤ 2 as ${}_{\mathcal{B}}T_{\mathcal{C}}$ has a row of zeros. As the determinant is not equal to ± 1 , it immediately cannot be orthogonal.

(c)

$${}_{\mathcal{B}}T_{\mathcal{C}} = \begin{bmatrix} 1 & 3 & 0 \\ -1 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} , \quad \det({}_{\mathcal{B}}T_{\mathcal{C}}) = 0$$

As the transition matrix has determinant zero, C is not a basis. One could also notice the first two columns are proportional, and so there is a linear dependence between f_1 , f_2 . As the determinant is not equal to ± 1 , it immediately cannot be orthogonal.

(d)

$$_{\mathcal{B}}T_{\mathcal{C}} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$
, $\det(_{\mathcal{B}}T_{\mathcal{C}}) = -\lambda$

The transition matrix has nonzero determinant whenever $\lambda \neq 0$, and so C forms a basis when this occurs.

C is not orthogonal - if we calculate $({}_{\mathcal{B}}T_{\mathcal{C}})^{\mathsf{T}}({}_{\mathcal{B}}T_{\mathcal{C}})$, we see

[0	1	1	0	1	0		2	1	λ]	$\neq I_3.$
1	0	1	1	0	0	=	1	2	λ	$\neq I_3.$
0	0	λ	1	1	λ		λ	λ	λ^2	

One could also notice this by considering the length of f_3 :

$$|\mathbf{f}_3| = \sqrt{2 + \lambda^2} > 1,$$

therefore ${\mathcal C}$ cannot be orthonormal as f_3 is not unit length.

4. Consider the sets of polynomials

$$V = \left\{ ax^2 + bx + c \mid a, b, c \in \mathbb{R} \right\}, T = \left\{ x^2 + px + q \mid p, q \in \mathbb{R} \right\}$$

with the natural operations of addition and multiplication of polynomials.

[You may assume these operations satisfy commutativity, associativity and distributivity.]

- (a) Which of these are vector spaces (over \mathbb{R}), and why?
- (b) Show the polynomials $1, x, x^2$ are linearly independent in *V*.
- (c) Calculate the dimension of V.

Solution:

(a) *T* is not a vector space, as the sum of any two polynomials does not belong to *T* e.g. $x^2 + x^2 = 2x^2 \notin T$.

V is a vector space. Let $f = a_2x^2 + a_1x + a_0$, $g = b_2x^2 + b_1x + b + 0$, to see the remaining axioms hold:

- (Zero) Setting $a_2 = a_1 = a_0 = 0$ gives f = 0 as the zero element.
- (Unity) Clearly $1 \cdot f = f$.
- (Additive inverses) For f, the inverse polynomial is $-f = (-a_2)x^2 + (-a_1)x + (-a_0)$.
- (Additive closure) The sum $f + g = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$ is contained in V.
- (Multiplicative closure) λ · f = (λa₂)x² + (λa₁)x + (λa₀) is contained in V for any choice of λ ∈ ℝ.

(b) Suppose $1, x, x^2$ satisfy an identity

$$c_0 \cdot 1 + c_1 \cdot x + c_2 \cdot x^2 = \mathbf{0} (= 0 \cdot 1 + 0 \cdot x + 0 \cdot x^2)$$

for some choice of $c_0, c_1, c_2 \in \mathbb{R}$. Equivalently, the polynomial $P(x) = c_0 + c_1 x + c_2 x^2$ equals zero for all choices of x. Testing this on the values x = 0, 1, -1, we see

$$P(0) = c_0 \Rightarrow c_0 = 0$$

$$P(1) = c_1 + c_2 \Rightarrow c_1 = -c_2$$

$$P(-1) = -c_1 + c_2 \Rightarrow c_1 = c_2$$

$$\Rightarrow c_0 = c_1 = c_2 = 0$$

Therefore the only linear combination between $\{1, x, x^2\}$ equal to zero is when all coefficients are zero, and so they are linearly independent.

- (c) $\{1, x, x^2\}$ are linearly independent and span *V*, therefore they form a basis. Therefore dim(*V*) = 3.
- Let {a₁,..., a_m} be vectors of a vector space *V*. Show that if at least one of the vectors is equal to 0, then they are linearly dependent.

Solution: Without loss of generality, let us say $\mathbf{a}_1 = \mathbf{0}$. We can pick any arbitrary real $\lambda \neq 0$ such that

$$\lambda \cdot \mathbf{a}_1 + 0 \cdot \mathbf{a}_2 + \cdots + 0 \cdot \mathbf{a}_n = \mathbf{0}.$$

As we have found a linear combination where not all coefficients are zero, these vectors are linearly dependent.

6. Show that any three vectors in \mathbb{R}^2 must be linearly dependent.

Solution: Pick three arbitrary vectors

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$.

Note that by Question 2, if any are equal to 0 then we are done. Therefore without

loss of generality, we can say $a_1 \neq 0$. Consider the vectors

$$\mathbf{b}' = \mathbf{b} - \frac{b_1}{a_1} \mathbf{a} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - \begin{bmatrix} b_1 \\ \frac{a_2b_1}{a_1} \end{bmatrix} = \begin{bmatrix} 0 \\ \mu_b \end{bmatrix} , \ \mu_b = b_2 - \frac{a_2b_1}{a_1}$$
$$\mathbf{c}' = \mathbf{c} - \frac{c_1}{a_1} \mathbf{a} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} - \begin{bmatrix} c_1 \\ \frac{a_2c_1}{a_1} \end{bmatrix} = \begin{bmatrix} 0 \\ \mu_c \end{bmatrix} , \ \mu_c = c_2 - \frac{a_2c_1}{a_1}$$

If either μ_b , $\mu_c = 0$, we have found a linear dependence between two of the vectors. Otherwise, **b**', **c**' are linearly dependent as

$$\frac{1}{\mu_b}\mathbf{b}' - \frac{1}{\mu_c}\mathbf{c}' = \mathbf{0}$$

This gives rise to a linear dependence between $\{a, b, c\}$:

$$\frac{1}{\mu_b}\left(\mathbf{b}-\frac{b_1}{a_1}\mathbf{a}\right)-\frac{1}{\mu_c}\left(\mathbf{c}-\frac{c_1}{a_1}\mathbf{a}\right)=\left(\frac{c_1}{a_1\mu_c}-\frac{b_1}{a_1\mu_b}\right)\mathbf{a}+\frac{1}{\mu_b}\mathbf{b}-\frac{1}{\mu_c}\mathbf{c}=\mathbf{0}.$$

7. Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be vectors of \mathbb{E}^3 such that each has unit length and they are pairwise orthogonal with each other. Show explicitly that they form a basis for \mathbb{E}^3 .

Solution: We use the proposition that *n* linearly independent vectors in \mathbb{E}^n form a basis (proved in review session 1). As the space is three dimensional, it suffices to show the vectors are linearly independent, i.e. $\lambda_e \mathbf{e} + \lambda_f \mathbf{f} + \lambda_g \mathbf{g} = \mathbf{0}$ if and only if $\lambda_e = \lambda_f = \lambda_g = 0$. Take the inner product of $\lambda_e \mathbf{e} + \lambda_f \mathbf{f} + \lambda_g \mathbf{g}$ with \mathbf{e} :

$$\left\langle \lambda_{e} \mathbf{e} + \lambda_{f} \mathbf{f} + \lambda_{g} \mathbf{g}, \mathbf{e} \right\rangle = \lambda_{e} \left\langle \mathbf{e}, \mathbf{e} \right\rangle + \lambda_{f} \left\langle \mathbf{f}, \mathbf{e} \right\rangle + \lambda_{g} \left\langle \mathbf{g}, \mathbf{e} \right\rangle = \lambda_{e} \cdot 1 + \lambda_{f} \cdot 0 + \lambda_{g} \cdot 0 = 0$$

implying $\lambda_e = 0$. Taking the inner product with **f** and **g** gives $\lambda_f = \lambda_g = 0$, therefore $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ are linearly independent.

8. Let {**a**, **b**, **c**} be vectors in \mathbb{E}^3 such that **a**, **b** have unit length and are orthogonal to each other, and **c** has length $\sqrt{3}$ and forms the angle $\varphi = \arccos \frac{1}{\sqrt{3}}$ with **a** and **b**. Show that {**a**, **b**, **c** - **a** - **b**} forms an orthonormal basis for \mathbb{E}^3 .

Solution: a, **b** have unit length and are orthogonal to each other, we immediately have

$$\langle \mathbf{a}, \mathbf{a}
angle = \langle \mathbf{b}, \mathbf{b}
angle = 1$$
 , $\langle \mathbf{a}, \mathbf{b}
angle = 0$

We also know that as $|\mathbf{c}| = \sqrt{\langle \mathbf{c}, \mathbf{c} \rangle} = \sqrt{3}$, we see that $\langle \mathbf{c}, \mathbf{c} \rangle = 3$. Furthermore, we can calculate $\langle \mathbf{a}, \mathbf{c} \rangle$ via

$$\langle \mathbf{a}, \mathbf{c} \rangle = |\mathbf{a}| |\mathbf{c}| \cos \varphi = 1 \cdot \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1.$$

We also get $\langle \mathbf{b}, \mathbf{c} \rangle = 1$ via the same calculation.

To show $\{a, b, c - a - b\}$ form an orthonormal basis, we need to show they have unit length and are pairwise orthogonal. We know already **a**, **b** are orthogonal and have unit length. To see c - a - b is orthogonal to **a** (and by a very similar calculation **b**), we get

$$\langle \mathbf{c} - \mathbf{a} - \mathbf{b}, \mathbf{a} \rangle = \langle \mathbf{c}, \mathbf{a} \rangle - \langle \mathbf{a}, \mathbf{a} \rangle - \langle \mathbf{b}, \mathbf{a} \rangle = 1 - 0 - 1 = 0.$$

Finally, to check $\mathbf{c} - \mathbf{a} - \mathbf{b}$ has unit length, we get

$$\langle \mathbf{c} - \mathbf{a} - \mathbf{b}, \mathbf{c} - \mathbf{a} - \mathbf{b} \rangle = \langle \mathbf{c}, \mathbf{c} \rangle + \langle \mathbf{a}, \mathbf{a} \rangle + \langle \mathbf{b}, \mathbf{b} \rangle + 2 \langle \mathbf{a}, \mathbf{b} \rangle - 2 \langle \mathbf{a}, \mathbf{c} \rangle - 2 \langle \mathbf{b}, \mathbf{c} \rangle$$

= 3 + 1 + 1 + 2 \cdot 0 - 2 \cdot 1 - 2 \cdot 1 = 1,

therefore $|\mathbf{c}| = \sqrt{\langle \mathbf{c}, \mathbf{c} \rangle} = 1$.